好看的图形有哪些?

2025-12-03 20:54:31
推荐回答(1个)
回答1:

1、古代数学家赵爽的弦图,可以简洁的证明勾股定理。

如图,2ab+(b-a)²=c²,化简便得a²+b²=c²。其基本思想是图形经过割补后,面积不变。刘徽在注释《九章算术》时更明确地概括为出入相补原理,这是后世演段术的基础。

2、科赫(Kohn)分形雪花曲线。

科赫曲线是一种分形。其形态似雪花,又称科赫雪花、雪花曲线.瑞典人科赫于1904年提出了著名的“雪花”曲线,这种曲线的作法是,从一个正三角形开始,把每条边分成三等份,然后以各边的中间长度为底边。

分别向外作正三角形,再把“底边”线段抹掉,这样就得到一个六角形,它共有12条边。再把每条边三等份,以各中间部分的长度为底边,向外作正三角形后,抹掉底边线段。反复进行这一过程,就会得到一个“雪花”样子的曲线。这曲线叫做科赫曲线或雪花曲线。

3、玫瑰线

玫瑰线的说法源于欧洲海图。在中世纪的航海地图上,并没有经纬线,有的只是一些从中心有序地向外辐射的互相交叉的直线方向线。此线也称罗盘线,希腊神话里的各路风神被精心描绘在这些线上,作为方向的记号。

葡萄牙水手则称他们的罗盘盘面为风的玫瑰(rosedosventor)。水手们根据太阳的位置估计风向,再与“风玫瑰”对比找出航向。玫瑰线,即指引方向的线。

玫瑰线的相关历史:

世界上第一个明确提出经纬度理论的人是古希腊学者托勒密。最早的本初子午线则出现在15世纪出版的托勒密的世界地图上,定在了当时人们心中的世界起点,即现大西洋中非洲西北海岸附近的加那利群岛。

不像纬线有长有短,所有经线的长度皆相同,人们可以选择通过地球上任何一点的经线作为起始线。于是,在过去的许多年里,每个国家出版的地图所用经度皆是由自己的起始经线进行推算的,而航海家们使用的航海地图又往往是采用某一航线的出发点作为起算点。

巴黎零度经线的设立比格林尼治线要早,不过无论是巴黎经线还是格林尼治经线,这些零度经线的划定都是主观的划定。