高数微积分问题sinx/y dx该怎样计算原函数是:-ycosx/y
∫[0:π/2]dy∫[0:y²]sin(x/y)dx=-∫[0:π/2]ydy·cos(x/y)|[0:y²]=∫[0:π/2](y-ycosy)dy=(½y²-ysiny-cosy)|[0:π/2]=[½·(π/2)²-(π/2)sin(π/2)-cos(π/2)]-(½·0²-0·sin0-cos0)=⅛π²-½π+1
如图