∵x,y,z∈(0,1),且x+y+z=2,∴x2+y2+z2+2xy+2yz+2xz=4,再由x2+y2+z2= x2+y2+z2+x2+y2+z2 2 ≥xy+yz+xz,可得 x2+y2+z2+2xy+2yz+2xz=4≥3(xy+yz+xz ),∴u=xy+yz+zx≤ 4 3 ,当且仅当x=y=z时,等号成立.故答案为 4 3 .