a∈(π/2,π)
sina=4/5
cosα=- 根号[1-(4/5)^2] = - 3/5
sin(x+π/4)
=sinxcosπ/4+cosxsinπ/4
=根号2/2sinx + 根号2/2cosa
=根号2/2 * 4/5 + 根号2/2 *(-3/5)
=根号2 / 10
根号2/2cosa
=根号2/2 *(-3/5)
=-3根号2 / 10
sin(x+π/4)+根号2/2cosa
=sinxcosπ/4+cosxsinπ/4+根号2/2cosa
=根号2/2sinx + 根号2/2cosa + 根号2/2cosa
=根号2/2sinx + 根号2cosa
=根号2/2 * 4/5 + 根号2 *(-3/5)
=2根号2 / 5 + 根号2 *(-3/5)
=-根号2 / 5
x是钝角
cosx<0
sin²x+cos²x=1
cosx=-3/5
sin(x+π/4)
=sinxcosπ/4+cosxsinπ/4
=√2/10
√2/2*cosa=-3√2/10