S1=a1=2
Sn=2an-2,S(n-1)=2a(n-1)-2
an=2an-2a(n-1)
an/a(n-1)=2
an=a12^(n-1)=2^n
an=2^n
bn=2n+1.b(n-1)=2n-1.
bn-b(n-1)=2
b1=3
Tn=3n+n(n-1)/2*2=n^2+2n
Tn=n^2+2n
2)1/Tn=1/n(n+2)=1/2[1/n-1/(n+2)]
Gn=1/2[(1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+...+1/n-1/(n+2)]
Gn=1/2[1-1/(n+1)-1/(n+2)]
Gn=(n^2+n-1)/2(n^2+3n+2)