∵△ACE是等边三角形
∴∠EAC=60°,AE=AC
∵∠BAC=30°
∴∠FAE=∠ACB=90°,AB=2BC
∵F为AB的中点
∴AB=2AF
∴BC=AF
∴△ABC≌△EFA
∴∠AEF=∠BAC=30°
∴EF⊥AC
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠AEF,
∴△DBF≌△EFA(AAS).
这道题本题选D
B
是
没图怎么作啊,提供图形啊