∫ ƒ(x) dx = ln[x + √(1 + x²)]
ƒ(x) = [1 + x/√(1 + x²)]/[x + √(1 + x²)]
= [√(1 + x²) + x]/√(1 + x²) * 1/[x + √(1 + x²)]
= 1/√(1 + x²)
————————————————————
∫ xƒ'(x) dx
= ∫ x d[ƒ(x)]
= xƒ(x) - ∫ ƒ(x) dx
= x/√(1 + x²) - ln[x + √(1 + x²)] + C
先求出f(x)
然后再分部积分