y'=e^[tan(1/x)]*[tan(1/x)]'
=e^[tan(1/x)]*[sec(1/x)]^2*(1/x)'
=-{e^[tan(1/x)]*[sec(1/x)]^2}/x^2
y'=e^[tan(1/x)]*[tan(1/x)]'=e^[tan(1/x)]*[sec(1/x)]^2*(1/x)'=-{e^[tan(1/x)]*[sec(1/x)]^2}/x^2
y=(e^tan(1/x))'
=e^tan(1/x)*[tan(1/x)]'
=e^tan(1/x)*{1/[(cos(1/x))^2]}*(1/x)'
=e^tan(1/x)*{1/[(cos(1/x))^2]}*(-1/x^2)'
y=e^[tan(1/x)]
y'=e^[tan(1/x)]*[tan(1/x)]'
=e^[tan(1/x)]*[sec(1/x)]^2*(1/x)'
=e^[tan(1/x)*[sec(1/x)]^2*(-1/x^2)