解∵
<x<17π 12
∴7π 4
<x+5π 3
<2π,π 4
又∵cos(
+x)=π 4
3 5
∴sin(x+
)=?π 4
=?
1?cos2(x+
)π 4
,4 5
sin2x=?cos(
+2x)=1?2cos2(π 2
+x)=π 4
7 25
∴
=sin2x+2sin2x 1?tanx
=2sinx(cosx+sinx)
cosx?sinx cosx
sin2x?
?sin(
2
+x)π 4
?cos(
2
+x)π 4
=
=sin2x?sin(
+x)π 4 cos(
+x)π 4
=
×(?7 25
)4 5
3 5